Competitive and technology intelligence to reveal the most influential authors and inter-institutional collaborations on additive manufacturing for hand orthoses


  • Leonardo A. Garcia-Garcia University of Sussex
  • Marisela Rodríguez Instituto Tecnológico y de Estudios Superiores de Monterrey - Campus Monterrey



3D printing, additive manufacturing, betweenness centrality, bibliographic coupling, competitive intelligence, hand orthoses, network map analysis, scientometrics


Additive manufacturing (AM) is revolutionizing the health industry, where itprovides innovative solutions for the production of personalized devices, such as hand orthoses.However, the scientific research dynamics in this topic have not yet been investigated. Thisstudy aims to fill this gap through the application of a competitive and technology intelligence(CTI) methodology enhanced by a scientometric and network map analysis. Major advances inthe fabrication of hand orthoses using AM, the presence of collaborations, and the mostinfluential authors were determined. Specifically, network map analysis, bibliographicoccurrence and bibliographic coupling were conducted on documents retrieved from Scopus andthe Web of Science (WoS), and on patents from more than 104 authorities. Results showed onlynine published patent families and 34 research articles on this topic from 2006 to 2016. Tenpapers concern static orthoses, while 24 deal with dynamic orthoses and exoskeletons. Theindegree and outdegree parameters and the betweenness centrality of these documents enabledus to determine the most cited authors and instances of collaboration (papers co-authoredbetween institutions). Dr. Paterson A. M. J. was the most influential author, with fourpublications with the highest betweenness centrality in the network (189), which accounted forthe most cited document with five citations. The institution with the most publications wasLoughborough University, with four papers, and the collaboration between affiliations was rare.These documents review important aspects of manufacturing orthoses using AM, andadditionally pay particular attention to the importance of personalised orthoses where AMcontributes. Notably, these papers focused primarily on studies for the development of amethodology for the fabrication of hand orthoses using AM, but they do not present anyapplication. This research provides insights to better understand the dynamics of research anddevelopment in the orthopaedics domain, specifically for hand orthoses.


Archibugi, D. and Pianta, M. (1996). Measuring

Technological Change through Patents and

Innovation Surveys. Technovation, 16(9), 451-


Bakhtin, P. and Saritas, O. (2016). Tech Mining

for Emerging STI Trends Through Dynamic

Term Clustering and Semantic Analysis: The

Case of Photonics. In Daim, T., Chiavetta, D.,

Porter, A. and Saritas, O. (eds). Anticipating

Future Innovation Pathways Through Large

Data Analysis. New York: Springer, 341-360.

Banks, J. (2013). Adding Value in Additive

Manufacturing. IEEE Pulse, 4(6), 22–26.

Baronio, G., Harran, S. and Signoroni, A. (2016).

A Critical Analysis of a Hand Orthosis

Reverse Engineering and 3D Printing Process.

Applied Bionics and Biomechanics,


Basiliere, P., and Shanler, M. (2015). Hype Cycle

for 3D Printing, 2015(July) , 1-26.

Bastian, M., Heymann, S. and Jacomy, M. (2009).

Gephi: An Open Source Software for Exploring

and Manipulating Networks. Third

International AAAI Conference on Weblogs

and Social Media, 361-362.

Bataller, A., Cabrera, J. A., Clavijo, M. and

Castillo, J. J. (2016). Evolutionary synthesis of

mechanisms applied to the design of an

exoskeleton for finger rehabilitation.

Mechanism and Machine Theory, 105, 31-433.


Bianchi, M., and Buonamici, F. (2016). Design

and Optimization of a Flexion/Extension

Mechanism for a Hand Exoskeleton System.

In Asme 2016. North Carolina.

Biscaro, C., and Giupponi, C. (2014). Coauthorship

and bibliographic coupling

network effects on citations. PLoS ONE, 9(6).

Bonino, D., Ciaramella, A. and Corno, F. (2010).

Review of the state-of-the-art in patent

information and forthcoming evolutions in

intelligent patent informatics. World Patent

Information, 32(1), 30-38.

Bornmann, L. and Leydesdorff, L. (2014).

Scientometrics in a changing research

Landscape. EMBO Reports, 15(12), 1-6.

Bouzit, M., Burdea, G., Popescu, G. andBoian, R.

(2002). The Rutgers Master II - New design

force-feedback glove. IEEE/ASME

Transactions on Mechatronics, 7(2), 256-263.

Brandes, U. (2001). A faster algorithm for

betweenness centrality*. The Journal of

Mathematical Sociology, 25(2), 163-177. doi:


Cassell, E., Ashby, K., Gunatilaka, A. and

Clapperton, A. (2005). Do wrist guards have

the potential to protect against wrist injuries

in bicycling, micro scooter riding, and monkey

bar play? INJURY PREVENTION, 11(4), 200-

Cincotti, C. C., O’Donnell, S., Zapata, G. E.,

Rabolli, C. M. and BuSha, B. F. (2015).

Strength amplifying hand exoskeleton. 2015

st Annual Northeast Biomedical

Engineering Conference, NEBEC 2015.

Colditz, J. (1996). Principles of splinting and

splint prescription. In Peimer, C. A. (ed).

Surgery of the Hand and Upper Extremity.

New York: McGraw-Hill, 2389-2410.

Colditz, J. C. (2002). Plaster of Paris: The

forgotten hand splinting material. Journal of

Hand Therapy, 15(2), 144-157.


Cook, D., Gervasi, V., Rizza, R., Kamara, S. and

Liu, X.C. (2010). Additive fabrication of

custom pedorthoses for clubfoot correction.

Rapid Prototyping Journal, 16(3), 189-193.

Coppard, B. M., and Lohman, H. (2015).

Introduction to orthotics : a clinical reasoning

& problem-solving approach. Maryland

Heights, MO: Mosby.

Da Fonsêca, G. F. G., Lopes, J. A. L., da Silva, J.

R. C., de Almeida, L. C., and de Andrade, M.

M. (2016). BR 102014029649 A2:

Manufacturing process articulated prostheses

from a combination of rigid and flexible

material in one piece. Brazil.

Davey, S. M., Brennan, M., Meenan, B. J. and

McAdam, R. (2011). Innovation in the medical

device sector: an open business model

approach for high-tech small firms.

Technology Analysis & Strategic Management,

(8), 807-824.

Deniz, K. (2016). WO 2016071773 A2: Methods

for Integrating Sensors and Effectors in

Custom Three-Dimensional Orthosis. Turkey.

Deshpande, A. (2015). WO 2015095459 A1:

Robotic finger exoskeleton. US.

Dormehl, L. (2018). 14 major milestones along the

brief history of 3D printing. Elmira, NY:


Elsevier, B.V. (2016). Scopus: Content Coverage

Guide. Retrieved from



Espalin, D., Arcaute, K., Rodriguez, D., Medina,

F., Posner, M. and Wicker, R. (2010). Fused

deposition modeling of patient-specific

polymethylmethacrylate implants. Rapid

Prototyping Journal, 16(3), 164-173.

Fabry, B., Ernst, H., Langholz, J. and Köster, M.

(2006). Patent portfolio analysis as a useful

tool for identifying R&D and business

opportunities–an empirical application in the

nutrition and health industry. World Patent

Information, 28(3), 215-225.

Faustini, M. C., Neptune, R. R., Crawford, R. H.

and Stanhope, S. J. (2008). Manufacture of

passive dynamic ankle-foot orthoses using

selective laser sintering. IEEE Transactions

on Biomedical Engineering, 55(2), 784-790.

Fess, E. E. (2002). A History of splinting: To

understand the present, view the past.

Journal of Hand Therapy, 15(2), 97-132.

Fess, E. E., & Fess, E. E. (2005). Hand and upper

extremity splinting : principles & methods.

Maryland Heights, MO: Mosby.

Fess, E., and McCollum, M. (1998). The influence

of splinting on healing tissues. Journal of

Hand Therapy: Official Journal of the

American Society of Hand Therapists, 11(2),



García-García, L. A. and Rodríguez-Salvador, M.

(2018). Additive manufacturing knowledge

incursion on orthopaedic devices: The case of

hand orthoses. In The 3rd International

Conference on Progress in Additive

Manufacturing. 571-576).

Gmür, M. (2003). Co-citation analysis and the

search for invisible colleges: A methodological

evaluation. Scientometrics, 57(1), 27-57.

Goodman, S. L., Kim, Kyujung andSchroeder, J.

(2007). WO 2007045000 A2: Personal fit

medical implants and orthopedic surgical

instruments and methods for making. United


Hopkinson, N., Hague, R. and Dickens, P. (2005).

Rapid Manufacturing: an industrial

revolution for the digital age. Hoboken, NJ:

John Wiley & Sons, Ltd.

Imms, C., et al.. (2016). Minimising impairment:

Protocol for a multicentre randomised

controlled trial of upper limb orthoses for

children with cerebral palsy. BMC Pediatrics,

Iqbal, J., Tsagarakis, N. G. and Caldwell, D. G.

(2010). A human hand compatible optimised

exoskeleton system. 2010 IEEE International

Conference on Robotics and Biomimetics,

ROBIO 2010, 685-690.

Iqbal, J., Tsagarakis, N. G., Fiorilla, A. E. and

Caldwell, D. G. (2010). A portable

rehabilitation device for the hand. 2010

Annual International Conference of the IEEE

Engineering in Medicine and Biology Society,

EMBC’10, 3694-3697.

Jacomy, M., Venturini, T., Heymann, S. and

Bastian, M. (2014). ForceAtlas2, a continuous

graph layout algorithm for handy network

visualization designed for the Gephi software.

PLoS ONE, 9(6).

Schouwenburg, K. L., Bersak, D., Smith, J. and

Murphy, C. N.. (2016). US 20160101571 A1:

Systems and methods for generating orthotic

device models by surface mapping and

extrusion. US.

Kim, H. and Jeong, S. (2015). Case study: Hybrid

model for the customized wrist orthosis using

D printing. Journal of Mechanical Science

and Technology, 29(12).

Kuusi, O. andMeyer, M. (2007). Anticipating

technological breakthroughs: Using

bibliographic coupling to explore the

nanotubes paradigm. Scientometrics, 70(3),



Leydesdorff, L., De Moya-Anegõn, F. and

Guerrero-Bote, V. P. (2015). Journal maps,

interactive overlays, and the measurement of

interdisciplinarity on the basis of Scopus data

(1996-2012). Journal of the Association for

Information Science and Technology, 66(5),


Leydesdorff, L. and Milojević, S. (2015).

Scientometrics. International Encyclopedia of

the Social & Behavioral Sciences (Second

Edition), 322–327.


Low, J.-H., Ang, M. H. and Yeow, C.-H. (2015).

Customizable soft pneumatic finger actuators

for hand orthotic and prosthetic applications.

In IEEE International Conference on

Rehabilitation Robotics (Vol. 2015-Sept).

Madden, K. E. and Deshpande, A. D. (2015). On

Integration of Additive Manufacturing During

the Design and Development of a

Rehabilitation Robot: A Case Study. Journal

of Mechanical Design, 137(11), 111417.

Matthew Chin, H. C., Hoon, L. J. and Yeow, R. C.

H. (2016). Design and evaluation of

Rheumatoid Arthritis rehabilitative Device

(RARD) for laterally bent fingers. In

Proceedings of the IEEE RAS and EMBS

International Conference on Biomedical

Robotics and Biomechatronics. 2016(July)..

Mavroidis, C. et al. (2011). Patient specific anklefoot

orthoses using rapid prototyping. Journal

of NeuroEngineering and Rehabilitation, 8(1),

McCain, K. W. (1990). Mapping Authors in

Intellectual Space: A Technical Overview.

Journal of the American Society for

Information Science, 41(6), 433-443.

Mingers, J. and Leydesdorff, L. (2015). A Review

of Theory and Practice in Scientometrics A

Review of Theory and Practice in

Scientometrics 1. European Journal of

Operational Research, (1934), 1-47.

Oldham, P., Hall, S. and Burton, G. (2012).

Synthetic biology: Mapping the Scientific

landscape. PLoS ONE, 7(4).

Omarkulov, N., Telegenov, K., Zeinullin, M.,

Tursynbek, I. and Shintemirov, A. (2016).

Preliminary mechanical design of NU-Wrist:

A 3-DOF self-Aligning Wrist rehabilitation

robot. Proceedings of the IEEE RAS and

EMBS International Conference on

Biomedical Robotics and Biomechatronics.

(July), 962-967.

Palousek, D., Rosicky, J., Koutny, D., Stoklásek,

P. and Navrat, T. (2014). Pilot study of the

wrist orthosis design process. Rapid

Prototyping Journal, 20(1).

Paterson, A. M., Bibb, R., Campbell, R. I. and

Bingham, G. (2015). Comparing additive

manufacturing technologies for customised

wrist splints. Rapid Prototyping Journal,

(3). doi: 10.1108/RPJ-10-2013-0099

Paterson, A. M., Bibb, R. J. and Campbell, R. I.

(2012). Evaluation of a digitised splinting

approach with multiple-material functionality

using additive manufacturing technologies. In

D. Bourell (Ed.), Twenty-Third Annual

International Solid Freeform Fabrication

Symposium, 656-672.

Paterson, A. M., Donnison, E. Bibb, R. J. and Ian

Campbell, R. (2014). Computer-aided design

to support fabrication of wrist splints using 3D

printing: A feasibility study. Hand Therapy,

(4), 102-113.

Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.

(2010a). A review of existing anatomical data

capture methods to support the mass

customisation of wrist splints. Virtual and

Physical Prototyping, 5(4), 201-207.

Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.

(2010b). A review of existing anatomical data

capture methods to support the mass

customisation of wrist splints. Virtual and

Physical Prototyping, 5(4).

Polygerinos, P., Wang, Z., Galloway, K. C., Wood,

R. J. and Walsh, C. J. (2014). Soft robotic glove

for combined assistance and at-home

rehabilitation. Robotics and Autonomous

Systems, 73, 135-143.

Porter, A. L. and Youtie, J. (2009). How

interdisciplinary is nanotechnology? Journal

of Nanoparticle Research, 11(5), 1023-1041.

Reimer, S. M. F., Lueth, T. C. and D’Angelo, L. T.

(2014). Individualized arm shells towards an

ergonomic design of exoskeleton robots.

Conference Proceedings - IEEE International

Conference on Systems, Man and Cybernetics,

–Janua(January), 3958-3965.

Ranky, R. and Mavroidis, C. (2014). JP

A: Customizable embedded

sensors. Japan.

Rodríguez-Salvador, M. and Tello-Bañuelos, M.

(2012). Applying patent analysis with

competitive technical intelligence: The case of

plastics. Journal of Intelligence Studies in

Business, 2(1), 51-58. Retrieved from


Rodríguez-Salvador, M., Rio-Belver, R. M. and

Garechana-Anacabe, G. (2017). Scientometric

and patentometric analyses to determine the

knowledge landscape in innovative

technologies: The case of 3D bioprinting. PLoS

ONE, 12(6).

Rodríguez-Salvador, M., Cruz-Zamudio, P.,

Avila-Carrasco S.A., Olivares-Benítez, E. and

Arellano-Bautista, B. (2014). Strategic

Foresight: Determining Patent Trends in

Additive Manufacturing. Journal of

Intelligence, 4(3), 42-62. Retrieved from


Rotolo, D., Rafols, I., Hopkins, M. and

Leydesdorff, L. (2015). Strategic Intelligence

on Emerging Technologies: Scientometric

Overlay Mapping. Journal of the Association

for Information Science and Technology,

(September), 1-38.

Schiele, A. and Van Der Helm, F. C. T. (2006).

Kinematic design to improve ergonomics in

human machine interaction. IEEE

Transactions on Neural Systems and

Rehabilitation Engineering, 14(4), 456-469.

Schroeder, J. (2010). WO 2010120990 A1:

Personal fit medical implants and orthopedic

surgical instruments and methods for making.

United States.

Schubert, C., Van Langeveld, M. C. and Donoso,

L. A. (2014). Innovations in 3D printing: a 3D

overview from optics to organs. The British

Journal of Ophthalmology, 98(2), 159-61.

Schultz-Johnson, K. (2002). Static progressive

splinting. Journal of Hand Therapy : Official

Journal of the American Society of Hand

Therapists, 15(June), 163-178.

Schwartz, D. A. and Janssen, R. G. (2005). Static

progressive splint for composite flexion.

Journal of Hand Therapy, 18(4), 447-449.

Sinha, M. and Pandurangi, A. (2016). Guide to

practical patent searching and how to use

Patseer for patent search and analysis (Second


Small, H. (1973). Co-citation in the Scientific

Literature : A New Measure of the

Relationship Between Two Documents, 265-

Tan G., Robson, N. and Soh, G. S. (2016).

Dimensional synthesis of a passive eight-bar

slider exo-limb for grasping tasks. In

International Design Engineering Technical

Conferences and Computers and Information

in Engineering Conference, Volume 5B: 40th

Mechanisms and Robotics Conference (p. 9).

North Carolina.

Tang, T., Zhang, D., Xie, T. and Zhu, X. (2013).

An exoskeleton system for hand rehabilitation

driven by shape memory alloy. In 2013 IEEE

International Conference on Robotics and

Biomimetics, ROBIO 2013.

Thomson Reuters. (2011). Web of Science ®, 1–4.

Velho, T. and Zavaglia, C. (2011). A Contribution

to the Development of a Human-Machine

Exoskeleton Device Using Rapid Prototyping

Technology. In Proceedings of the 2011 IEEE

international Conference on Robotics and


Ventola, C. L. (2014). Medical Applications for 3D

Printing: Current and Projected Uses.

Pharmacy and Therapeutics, 39(10), 704-711.

Weiss, P., Heyer, L., Munte, T. F., Heldmann, M.,

Schweikard, A. and Maehle, E. (2013).

Towards a parameterizable exoskeleton for

training of hand function after stroke. IEEE

International Conference on Rehabilitation


White, H. D. and Griffith, B. C. (1981). Author

cocitation: A literature measure of intellectual

structure. Journal of the American Society for

Information Science, 32(3), 163-171.

Winter, S. H. and Bouzit, M. (2006). Testing and

Usability Evaluation of the MRAGES Force

Feedback Glove. In Fifth International

Workshop on Virtual Rehabilitation, IWVR

(pp. 82-87).

Worsnopp, T. T., Peshkin, M. A., Colgate, J. E.

and Kamper, D. G. (2007). An actuated finger

exoskeleton for hand rehabilitation following

stroke. 2007 IEEE 10th International

Conference on Rehabilitation Robotics,

ICORR’07, 00(c), 896-901.

Xiogjiao, X., Ning, Y. & Haolin, Z. (2014). CN

U: Novel bionic exoskeleton

artificial limb controlled by cable wires. China.

Yap, H. K., Ng, H. Y. and Yeow, C.H. (2016).

High-Force Soft Printable Pneumatics for Soft

Robotic Applications. Soft Robotics, 3(3).

Zachariasen, J. T. and Cropper, D. E. (2015). US

A1: Use of additive

manufacturing processes in the manufacture

of custom wearable and/or implantable

medical devices. US.

Zhao, D. and Strotmann, A. (2008). Evolution of

research activities and intellectual influences

in information science 1996-2005: Introducing

author bibliographic-coupling analysis.

Journal of the American Society for

Information Science and Technology, 59(13),