
32

Multiversion Document Warehouse: An Approach to
Multidimensional Analysis

Kaïs Khrouf*, Jamel Feki*, Chantal Soulé-Dupuy**

* MIR@CL Laboratory - University of Sfax - Tunisia,

** IRIT - University of Toulouse I – France

Received 15 December 2010; received in revised form 2 March 2012; accepted 27 April 2012

ABSTRACT: Document warehouses allow the storage of selected and filtered heterogeneous documents, as
well as their exploitation through multidimensional analyses techniques. However, the content of documents is
dynamic and changes across time. In practice, decisional analysts may be interested with various versions of
documents. Thus, the document warehouse should store and manage these versions. This paper presents an
extended generic model for document warehouses allowing the management of the multiversion documents. In
addition, it interests with multidimensional analysis on documents versions.

Keywords: Document warehouse, Multiversion documents, Multidimensional analyses

1. Introduction

Nowadays, Internet allows an exponential
evolution of data volumes stored and exchanged
among organizations. These evolutions raise new
problems: How to deal with changes undergone by
documents? What are these changes and how to
detect them? For instance, a user revisiting a
document might want to be informed of the
document changes since his last visit.

In order to maintain various versions of the same
warehoused document, we need the concept of
document warehouse. The author of (Khrouf &
Soulé-Dupuy, 2004) defined the document
warehouse as a source of information that is
subject-oriented, filtered, integrated, archived
(versions), and organized for a process of retrieval,
interrogation or analysis.

According to this definition, documents integrated
in the warehouse could be historized (i.e., retain
their evolution over time through different
versions). In order to reach this objective, we
propose an extension for the document warehouse
meta-model defined in (Khrouf, Feki and Soulé-
Dupuy, 2011). This extension is expected to
manage content changes (i.e., when the document
content is modified) and structural changes (i.e.,
when the document structure changes) that can
undergo one document or class of documents.

The extended meta-model allows applying
techniques of multidimensional analyses on
multiversion documents. We distinguish two types
of analysis: i) Multiversion analysis, i.e., analysis
covering all versions for the same document, and
ii) Recent-version analysis; i.e., analysis relying on
the last version of document(s).

Available for free online at https://ojs.hh.se/

Journal of Intelligence Studies in Business 2 (2012) 32-40

33

This paper deals with the problematic of
multiversion document warehouse; it is organized
as follows. In section 2 we outline some works
devoted to the management of multiversion
documents. In section 3, we propose an extended
meta-model for document warehouse and, in
sections 4 to 6 we detail our approach of
multidimensional analyses on multiversion
documents integrated in the warehouse. Finally,
we give an overview of our software prototype
baptized DocWare (Document Warehouse).

2. Related works

For the management of multiversion documents,
several theoretical works have been proposed in
the literature; furthermore, software prototypes
have emerged.

Nicolle, Alvarez & Amghar (2001) consider that
the document is a set of independent fragments
(parts). They distinguish two types of versions: a
document version and a fragment version. In fact,
the modification of certain document fragments
creates new versions of fragments, and therefore a
new version of the whole document.

XyDiff (Cobéna Abiteboul & Marian, 2002) is a
component of Xylème (Abiteboul, Cluet, Ferran &
Rousset, 2002) to manage different versions of a
document. Every modified item is represented as
an XML file, stored in a data warehouse and
indexed. These files are used thereafter to
reconstruct previous versions of documents.
XyDiff uses the tree structure of XML documents
in order to detect movements and changes taking
place on a document.

X-Diff (Wang, DeWitt & Cai, 2003) is an
algorithm for integrating the characteristics of
XML structures with standard techniques of tree
comparison in order to calculate the differences
between two versions of an XML document. The
main feature of this algorithm is that XML
documents are modeled by unordered tree
structures, unlike the work of XyDiff.

Rusu, Rahayu & Taniar (2006) propose an
approach for extracting rules from the changes of
version of dynamic XML documents. Specifically,
the authors propose an algorithm that studies the
conduct of versions of XML documents in time
and thus determines learning rules to predict
document changes in the future.

In our work, we are interested not only in the
management of document versions (track and
detect changes of the document evolution through
time), but also for managing the versions of the
collections of documents (set of documents
gathered in the same class). In addition, we
develop a multidimensional analysis approach for
these multiversion documents.

3. Meta-model for document warehouses

3.1 Meta-model description
The document warehouse should store pertinent
documents in order to apply the multidimensional
analyse on these documents; In addition, it should
be able to manage the heterogeneity and support
the evolution of structures and contents. To do so,
we propose the meta-model of Figure 1.

Figure 1: Meta-model for multiversion document warehouses

Specific Structures

(c)

1..*

1..*

Associate

1
1..*

1..*

1

1..*

GenElt

NameGE

CardGE

VersGenElt

DateVGE

VersSpeElt

DateVSE

Information

Content

GenAtt

NameGA

SpeAttc

NameSA

ValueSA

Include

S_Include

Define

0..*

0..*

Generic Structures

(b)

Documents

(a)

0..*

0..*

S_Compose1

Compose

0..1

Contain

{ordre}

{order}

{order}

ItsGenStr

1..*

Documents

NameDoc

Content

(d)

{order}

1

Ontologies

(e)

1..* 1

1

Ontologies

NameOnt

Concept

NameCpt

belong

0..*

S_Concept

Assign0..*

0..1

1..*

1

GenStr

NameGS

VersGenStr

DateVGS

VersDoc

DateVDoc

1..*

ItsDoc

1

1..*

ItsVersGenStr

34

This metadata includes the following components:

 •A set of documents (Figure 1.a) to be integrated
in the document warehouse and their different
versions (Figure 1.a).

 •The hierarchical structure of documents. It is
made up of two types of structures:

I. The generic structure (Figure 1.b): It is a
common structure for a document set. It is
composed of a set of versions each of which is
defined by a set of versions of generic elements
which can be composed of other versions of
generic elements. Each of these elements can also
be described by generic attributes for example
book-Id.

II. The specific structure (Figure 1.c): It is
associated to a single document and has to be
compliant/identical to one among the existing
versions of generic structures. This structure is
defined by a set of versions of specific elements
that can include specific attributes.

 •The content (Figure 1.d) is the textual element
of the specific structure.

 •The semantic layer (Figure 1.e) is defined using
domain ontologies. In our context, ontology is
composed of a set of concepts hierarchically
organized where each leave concept is described
by a set of keywords.

3.2 Example

Figure 2 depicts a simple instantiation example for
our meta-model of Figure 1. In this example, we
manage three versions of the same document
Doc1:

 •Doc1 is initially compliant to Version1 of the
generic structure Article composed of Title and
Content.

 •After changes made on the Content element,
Doc1 belongs now to the new Version2 of Article.

 •After renaming the Content element to Section
composed of two Paragraphs (i.e., Dimension and
Fact), the new version of Doc1 is becoming
conform to Version3 of the generic structure
Article.

Figure 2: An instantiation example for the meta-model in Figure 1.

<Article>

<Title>DW</Title>

<Content> DSS … </Content>

</Article>

Doc1

Version1

<Article>

<Title>DW</Title>

<Content> OLAP … </Content>

</Article>

Doc1

Version2

V1 Article

V1 Title V1 Content

Doc1

V2V1

V2 Article

V2 Content

DW DSS… OLAP…

<Article>

<Title>DW</Title>

<Section>

<P> Dimension… </P>

<P> Fact… </P>

</Section>

</Article>

Doc1

Version3

V3

V3 Article

V1 Section

V1 P V1 P

Dimension… Fact…

Discovery
Knowledge

Data Mining

OLAP Design

kw11

...

kw22

kw23

...

kw12

...

Data
Warehouse

kw11

...

35

3.3 Meta-model advantages

The meta-model we proposed has the following
advantages:

 •Grouping heterogeneous documents having
identical or similar structures into classes. This
relies on an algorithm for comparing labeled tree
structures (Ben Messaoud, Feki, Khrouf &
Zurfluh, 2011)

 •Storing various versions of documents due to
evolutions.

 •Adding up of semantics to the documents by
linking the textual content to the concepts of
domain-ontologies (Ben Meftah, Khrouf, Feki,
Ben Kraiem & Soulé-Dupuy, 2011).

 •Applying multidimensional techniques on
documentary information. This feature will be
detailed in section four.

3.4 Meta-model implementation

As shown in Figure 1, the meta-model is designed
using the Unified Modeling Language (UML)
object-oriented modeling. The meta-model
implementation is carried out in an object
relational DBMS (Oracle 10g). To ensure this
translation, we have used the following
transformation rules:

 •Classes are transformed into tables.

 •For one-to-many relationships implementation,
we have two alternatives: use one mono-valuated
link or one multi-valued link in the opposite
direction. We opted for the mono-valuated link as
they facilitate the generation phase of views
necessary for the multidimensional analyses.

Example 1

•We implement many-to-many relationships using
multi-valuated links, specifically by using a list of
references as nested tables.

Example 2

 •For inheritance, we opted for mono-valued links
from subclasses to super-classes in order to
separate the two structures, generic and specific.

Figure 3: The navigational diagram of the proposed meta-model in Figure 1

VersDoc VersGenStr
Id_Doc DateDoc ItsVGS Id_VGS DateVGS

319 04/02/2012 17 01/02/2012

716 05/04/2012 24 05/04/2012

1426 14/05/2012

VersGenStr VersGenElt
Id_VGS DateVGS ItsVGE Id_VGE DateVGS

17 01/02/2012 67 01/02/2012

68 01/02/2012

24 05/04/2012 85 05/04/2012

InheritGE ItsGenStr

Specific Structures

(c) Associate

GenElt

Id_GE

NameGE

CardGE

VersGenElt

Id_VGE

DateVGE

VersSpeElt

Id_VSE

DateVSE

Information

Id_Cont

Content

GenAtt

Id_GA

NameGA

SpeAttc

Id_SA

NameSA

ValueSA

Include

S_Include

Generic Structures

(b)

Documents

(a)

S_Compose

Compose

Contain

Documents

Id_Doc

NameDoc

Content

(d)

Ontologies

(e)

Ontologies

Id_Ont

NameOnt

Concept

Id_Cpt

NameCpt

Belong

S_Concept

Assign

GenStr

Id_GS

NameGS

VersGenStr

Id_VGS

DateVGS

VersDoc

Id_VDoc

DateVDoc

ItsDoc

ItsVersGenStr

InheriteGA InheriteVGE

Define

36

3.5 Meta-model instantiation

The integration of a document into the warehouse
is accomplished through the three following steps:

I. Extraction of the specific structure for the
document by using a parser; it includes the
document tags and its hierarchical structure.

II. Comparison of the specific structure of the
document with the generic structures stored in the
warehouse. This step is accomplished through an
algorithm which calculates a similarity degree to
compare labeled tree structures (Ben Messaoud,
Feki, Khrouf & Zurfluh, 2011).

III. Insertion of the document content, information
and list of keywords into the warehouse while
linking the textual information to one or more
concepts that also are characterized by keywords.
We use the information retrieval techniques to
perform this step (reference).

4. Multidimensional analyses

The document warehouse is intended to allow
decision-making. To do so, we adopt the
multidimensional model (Kimball & Ross, 2002)
that considers an analyzed subject as a point within
a space having several dimensions. This model
relies on the concepts of fact and dimension. The
fact represents the subject to be analyzed as the
number of articles and, the dimensions represent
the context of recording the fact such as Author,
publication Year and Conference. Dimensions are
made up of attributes organized, from the finest to
the greatest granularity, into hierarchies.

Figure 3 describes our proposed multidimensional
process to analyze textual information stored in the
document warehouse.

Figure 4: Multidimensional analysis process

In following section, we detail the first two phases
of this process.

5. Phase 1: Construction of the document mart
schema

Let us remember that a generic structure gathers a
set of documents having identical or similar
structures. The decision makers can focus on a
generic structure to perform his/her analyses. The
first step consists in (1) selecting the analysis
context through the choice of the generic structure
on which analyses will be applied, and then (2)
selecting the type of analysis: Analysis covering
all versions or relying only on the last version of
documents.

During step two, the decision-maker selects the
multidimensional schema components, one fact
and a set of related dimensions:

 •A fact represents a subject of analysis,
composed of a set of attributes describing the
business activity. These attributes are called
measures or indicators and have numeric values.
As an example, let us consider the fact Publication
that has the measure Number of published articles.

 •The dimensions represent the analysis axes of
measures. This means that the measures of an
activity are observed according to these different
dimensions. For instance, measures of the
Publication fact can be analyzed according to the
several dimensions as Author, Year, and Concept.

In addition, the decision-maker indicates the order
of dimensions and the aggregation function
(Count, Sum, Max, Min and Avg) to be applied to
the fact measures.

In the third step, the decision-maker can select
specific values or introduce predicates in order to
filter data for analysis. We distinguish two types of
data filtering:

•Dimension filtering through which the user can
select values on a dimension.

 •Fact filtering where the user restricts the values
of the fact measures using the comparison
operators (<, >, <>, <=, >=, =).

Example:
Let us analyze the number of Publications
addressing the Data warehouse concept by Author
and by Year.

Construction of mart schema

Warehouse

Multidimensional
Schema

Document Mart

Multidimensional
Table

Automatic Generation of mart

Visualization

Multidimensional
Table

37

Figure 5: Affectation of analysis components

Once all these document mart schema-components
are defined, the next phase generates the document
mart. In our approach, this generation is
automatically performed.

6. Phase 2: Automatic generation of document
mart

The decision-maker task is now completed and the
automatic generation produces a document mart
instantiated from the warehouse. To simplify this
generation, we decompose it into two
complementary steps namely view generation for
each analysis component, element or concept, and
joining and grouping generated views.

6.1 Views generation for analysis component

The first step is to recover the identifiers of the
versions of documents belonging to the same
generic structure and concerned by the analysis.

 •Multiversion analysis

SELECT Id_VDoc
FROM VersDoc VD
WHRE VD.ItsVersGenStr.ItsGenStr.SaGS.NameGS =
' NameGS';

 •Recent version analysis

SELECT vd.ItsDoc.Id_Doc, Max(DateVDoc)
FROM VersDoc VD
GROUP BY VD.ItsDoc.Id_Doc;

Secondly, we recuperate trough a sub-query

three attributes:
(1) The identifier of each document.
(2) The identifier of the common ancestor of
analysis components.
(3) The concerned information.

These sub-queries are merged by the SQL Union
operator to obtain a single view. The sub-query the
system generates is the following.

SELECT

 'Id_VDOC', (1)
 i.Associate.S_Compose.S_ComposeID_VSE, (2)
 i.Content (3)

FROM Information i (4)

WHERE i.Associate

IN (Select nt.AdrVSE
 From The (select vd.Contain
 From VersDoc vd

 Where ID_Doc= 'ID_Doc')nt); (5)

--If the dimension is a generic element
AND i.Associate.InheritVGE.InheriteGE.NameGE=

' NameGE' (6)

--If the dimension is a concept

AND i.contain.NameCpt= 'NameCpt' (7)

Where:

(1) Document identifier

(2) Identifiers of specific elements those inherit
from the first common ancestor of all analysis
elements.

(3) Content of the specific element.

(4) Meta-model table name.

(5) Selection of the specific elements belonging to
the document ID_Doc.

(6) Selected name of the generic element (when a
dimension is based on a generic element).

(7) Name of the concept on which a dimension is
based.

 Note that the fact view is generated in the same
way like dimensions; the S_Compose denotes the
link between a specific element and its father

Conference

Name Year Language Thematics

Thematic

Dates

Submission Notification Registration Conf

Committee program

Member

Papers

Paper

Title Authors Abstract

AuthorFact

(Count)

Dimension 2

Information System

Database

Cube

Data Warehouse

OLAP

Dimension 1

Dimension 3

38

specific element so then the occurrences of
S_Compose equal the number of levels between a
chosen element and its ancestor.

As an example, for the Year dimension (cf. Figure
5) and the document 314 the system generates the
following script.

SELECT
 '314',
 i.Associate. S_Compose.ID_VSE,
 i.Content

FROM Information i

WHERE i.Associate

IN (Select nt.AdrVSE
 From The (select vd.Contain
 From VersDoc vd

 Where ID_Doc= '314')nt);

AND i.Associate.InheritVGE.InheriteGE.NameGE=
' Year '

The ancestor element of the analysis components
(Abstract, Author, Year, Title) is Conference.
There is one level between Year and Conference.
That’s why S_Compose is 1.

For the analysis component Data Warehouse
concept (cf. Figure 5), the system generates the
following script for the same document Id 314.

SELECT
'314' ,
i.Associate. S_Compose. S_Compose. S_Compose.ID_
SE,
i.Content

FROM Information i

WHERE i.Associate

IN (Select nt.AdrVSE
 From The (select vd.Contain
 From VersDoc vd

 Where ID_Doc= '314')nt);

AND i.contain.NameCpt= 'Datawarehouse'

The number of levels between Abstract and
Conference (ancestor element of the analysis
components) is 3. Thus the occurrences of
S_Compose equal 3.

6.2 Joining and grouping generated views

After generating the view for the fact and its
dimension views, we follow by linking these views
on their two first attributes, thus we generate a new
view called Joint. For our running example, it is
the following.

CREATE VIEW Joint (DataWarehouse, Year,
Author, Title) AS
SELECT DataWarehouse, Year, Author, Title
FROM DataWarehouse d1, Year d2, Author d3,
 Title f
WHERE d1.doc = d2.doc AND d2.doc = d3.doc
AND d3.doc = f.doc A ND d1.Anc = d2.Anc
AND d2.Anc = d3.Anc AND d3.Anc = f.Anc;

To generate the final view that describes the
document mart we Group by all dimensions and
apply the Count function.

CREATE VIEW Result (DataWarehouse, Year,
Author, Nb) AS
SELECT DataWarehouse, Year, Author,
Count(title)
FROM Join
GROUP BY DataWarehouse, Year, Author;

Figure 6 displays the result, obtained with the
generated view, in a multidimensional table.

Figure 6: Multidimensional table

7. DocWare prototype: Experimentation

To validate our proposals we developed the
software prototype DocWare (Document
Warehouse) for the integration and the analysis of
textual data. Specifically, DocWare provides the
two following main features: First it determines
the generic and specific structures of documents
and then inserts these documents automatically
into the document warehouse, and secondly assists
the administrator (or even skilled decision-makers)
during the construction of the document mart.

In the remainder we illustrate some
functionalities of DocWare through the following
example. Suppose we want to count the number of
scientific papers dealing with the Data Warehouse
concept, by Author and publication Year.

 •CONTEXT
Accessing the document warehouse content we
find that the documents describing the papers are
grouped into the generic structure Conference. It
contains all necessary elements to perform the
analysis (Abstract, Year and Author).

Nb
2007 1 1

2008 *

2009 2

… …

Concept

Data Warehouse
Publication

Foulen
Dupont

39

 •APPROACH
We follow the three steps of our approach.

I. Choice of analysis context:
We start by defining the generic structure for the
document mart to be constructed. Thus, the system
displays. Among the list of stored structures in the
warehouse, we choose the generic structure
Conference that will be visualized by a tree (Figure
7).

II. Selection of analysis components:
We specify the role (dimension or fact) of
elements to build the mart by using contextual
menus. Chosen elements are automatically
highlighted by using different shapes and colors
for dimensions (read) and facts (yellow). In our
example, we assign the Data Warehouse concept
to the generic element Abstract as the first
dimension. Then, we select the generic elements
Year and Author as the second and third

dimensions. Finally, the measure is the count of
Titles.
To assign a concept to a generic element,
DocWare displays the list of all existing ontologies
in the warehouse; this enables us to choose the
appropriate ontology (cf. Figure 8).

III. Filtering:
As we want to analyze the count of papers for the
authors of this paper, we apply a filter on the third
dimension. The system displays all Author values;
among them we select the three following names:
Kaïs Khrouf, Jamel Feki and Chantal Soulé-
Dupuy.

 •RESULT
To visualize the result, DocWare creates views
according the approach described in section 6 and
displays the result multidimensional table (cf.
Figure 9).

Figure 7: Affectation of a fact and dimensions

Figure 8: Affectation of concept for the generic element Abstract

40

Figure 9: The Result multidimensional table

8. Conclusion

The document warehouse allows flexible
manipulation of heterogeneous collections of
documents based on their structures and contents.
In this paper, we extended the document
warehouse meta-model toward a metamodel that
supports multiversion document warehouse. This
is for integrating a new feature: the management
and analysis of multiple versions of documents. As
documents evolution may concern their structure
and/or content, we addressed the storage of
versions compliant to a same document structure,
as well as versions compliant to a multiple
document structures. Decision makers could be
interested with the document evolutions, or even
ignore them. Therefore, we suggested two types of
analysis on documents namely: i) Multiversion
analysis; i.e., covering all versions for a same
document; and ii) Recent-version analysis; i.e.,
analysis relying only on the last version of
documents. In our proposed approach, each
document version is compliant to a version of
specific structure. Furthermore, various versions of
the same document are able to be compliant to
several versions of generic structures.

As an immediate perspective, we aim to extend the
process of multidimensional analysis by
integrating personalization criteria and metadata;
this could be done by the user himself or by an
assisted process. In addition, semantic aspects
during the analysis process are interesting; they
can help decision makers to get better analytics.

Acknowledgement

We would like to kindly thank Dr Mohamed
Mbarki and Ms Maha Azabou (Master degree
student) for their contribution to the
implementation of the DocWare system prototype.

References

Abiteboul S., Cluet S., Ferran G., Rousset M.C.

(2002). The Xyleme Project, Computer
Networks, 39(3): 225-238, 2002.

Ben Meftah S., Khrouf K., Feki J., Ben Kraiem M.,
Soulé-Dupuy C. (2012). Document Warehouse:
Integration of Semantic Structures, International
Conference on Information Systems ans
Intelligence Economic, Djerba, Tunisia.

Ben Messaoud I., Feki J., Khrouf K., Zurfluh G.
(2011). Unification of XML Document Structures
for Document Warehouse (DocW), International
Conference on Enterprise Information Systems, p.
85-94, Beijing, China.

Cobéna G., Abiteboul S. & Marian A. (2002).
Detecting changes in XML documents. In
International Conference on Data Engineering
(ICDE’2002), p. 41-52, San Jose, California, USA.

Kimball R. & Ross M. (2002). The Data Warehouse
Toolkit (2 edition). New York: John Wiley &
Sons.

Khrouf K. & Soulé-Dupuy C. (2004). A Textual
Warehouse Approach: a Web Data Repository, (p.
101-124). Hershey: Idea Group Publishing.

Khrouf K., Feki J., Soulé-Dupuy C. (2011). An
Approach of Multidimensional Analysis of
Document. International Conference on
Information Systems ans Intelligence Economic,
Marrakech, Morocco.

Nicolle C., Alvarez A., Amghar Y. (2001). Managing
Versions and Links for Structured Legacy
Documents, International Symposium on
Information Systems and Engineering (ISE’2001),
June 25-28, Las Vegas, Nevada, USA.

Rusu L.I., Rahayu J.W., Taniar D. (2006). Mining
Changes from Versions of Dynamic XML
Documents, p. 3- 12, Workshop on Knowledge
Discovery in XML Documents (KDXD), p. 3-12,
Singapore.

Wang Y., DeWitt D.J., Cai J.Y. (2003). X-Diff: An
Effective Change Detection Algorithm for XML
Documents, International Conference on Data
Engineering (ICDE’03), p. 519-530, Bangalore,
India.

